Sparse Bayesian Learning: A Beamforming and Toeplitz Approximation Perspective

> Bhaskar D Rao University of California, San Diego Email: brao@ucsd.edu

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(4日) (個) (主) (主) (三) の(の)

1. M. Tipping, Sparse Bayesian learning and the relevance vector machine, J. Machine Learning Research, vol. 1, pp. 211-244, 2001.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- 1. M. Tipping, Sparse Bayesian learning and the relevance vector machine, J. Machine Learning Research, vol. 1, pp. 211-244, 2001.
- 2. David Wipf and Bhaskar D. Rao, Sparse Bayesian learning for basis selection. IEEE Transactions on Signal processing, 2004.
- David Wipf and Bhaskar D. Rao,(2007), An empirical Bayesian strategy for solving the simultaneous sparse approximation problem. IEEE Transactions on Signal Processing, 55(7), 3704-3716.

- 1. M. Tipping, Sparse Bayesian learning and the relevance vector machine, J. Machine Learning Research, vol. 1, pp. 211-244, 2001.
- 2. David Wipf and Bhaskar D. Rao, Sparse Bayesian learning for basis selection. IEEE Transactions on Signal processing, 2004.
- David Wipf and Bhaskar D. Rao,(2007), An empirical Bayesian strategy for solving the simultaneous sparse approximation problem. IEEE Transactions on Signal Processing, 55(7), 3704-3716.
- 4. D. Wipf, B. Rao, S. Nagarajan, Latent Variable Bayesian Models for Promoting Sparsity, IEEE Trans. Info Theory, 2011.
- 5. D. Wipf and S. Nagarajan, Iterative Reweighted ℓ_1 and ℓ_2 Methods for Finding Sparse Solutions. IEEE Journal of Selected Topics in Signal Processing, 2010.

- 1. M. Tipping, Sparse Bayesian learning and the relevance vector machine, J. Machine Learning Research, vol. 1, pp. 211-244, 2001.
- 2. David Wipf and Bhaskar D. Rao, Sparse Bayesian learning for basis selection. IEEE Transactions on Signal processing, 2004.
- David Wipf and Bhaskar D. Rao,(2007), An empirical Bayesian strategy for solving the simultaneous sparse approximation problem. IEEE Transactions on Signal Processing, 55(7), 3704-3716.
- 4. D. Wipf, B. Rao, S. Nagarajan, Latent Variable Bayesian Models for Promoting Sparsity, IEEE Trans. Info Theory, 2011.
- 5. D. Wipf and S. Nagarajan, Iterative Reweighted ℓ_1 and ℓ_2 Methods for Finding Sparse Solutions. IEEE Journal of Selected Topics in Signal Processing, 2010.
- 6. D. Wipf and S. Nagarajan, (2007, June), Beamforming using the relevance vector machine. In Proceedings of the 24th international conference on Machine learning. ACM.

- 1. M. Tipping, Sparse Bayesian learning and the relevance vector machine, J. Machine Learning Research, vol. 1, pp. 211-244, 2001.
- 2. David Wipf and Bhaskar D. Rao, Sparse Bayesian learning for basis selection. IEEE Transactions on Signal processing, 2004.
- David Wipf and Bhaskar D. Rao,(2007), An empirical Bayesian strategy for solving the simultaneous sparse approximation problem. IEEE Transactions on Signal Processing, 55(7), 3704-3716.
- 4. D. Wipf, B. Rao, S. Nagarajan, Latent Variable Bayesian Models for Promoting Sparsity, IEEE Trans. Info Theory, 2011.
- 5. D. Wipf and S. Nagarajan, Iterative Reweighted ℓ_1 and ℓ_2 Methods for Finding Sparse Solutions. IEEE Journal of Selected Topics in Signal Processing, 2010.
- 6. D. Wipf and S. Nagarajan, (2007, June), Beamforming using the relevance vector machine. In Proceedings of the 24th international conference on Machine learning. ACM.
- 7. M. Al-Shoukairi, M. and B. Rao, Sparse Signal Recovery Using MPDR Estimation, 2019 ICASSP.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 りへぐ

Background

 Beamforming and Minimum Power Distortionless Response (MPDR) beamforming

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Background

 Beamforming and Minimum Power Distortionless Response (MPDR) beamforming

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Sparse Bayesian Learning (SBL)

Background

 Beamforming and Minimum Power Distortionless Response (MPDR) beamforming

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Sparse Bayesian Learning (SBL)
- Connection between SBL and MPDR beamforming

Background

 Beamforming and Minimum Power Distortionless Response (MPDR) beamforming

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Sparse Bayesian Learning (SBL)
- Connection between SBL and MPDR beamforming
- Uniform Linear Arrays and Toeplitz Matrix Approximation

Background

 Beamforming and Minimum Power Distortionless Response (MPDR) beamforming

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Sparse Bayesian Learning (SBL)
- Connection between SBL and MPDR beamforming
- Uniform Linear Arrays and Toeplitz Matrix Approximation
- Nested Arrays and more sources than sensors

Narrow-band signal model for an array with N sensors.

$$\mathbf{y}(\omega_c, n) = \mathbf{V}(\omega_c, \mathbf{k}_0) \mathbf{x}_0[n] + \sum_{l=1}^{D-1} \mathbf{V}(\omega_c, \mathbf{k}_l) \mathbf{x}_l[n] + \mathbf{Z}[n], n = 1, .., L$$

 ω_c is the carrier frequency, \mathbf{k}_l is the source direction, and $\mathbf{V}(\omega_c, \mathbf{k})$ is the array manifold and is the response of the array to a source at direction \mathbf{k} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Narrow-band signal model for an array with N sensors.

$$\mathbf{y}(\omega_c, n) = \mathbf{V}(\omega_c, \mathbf{k}_0) x_0[n] + \sum_{l=1}^{D-1} \mathbf{V}(\omega_c, \mathbf{k}_l) x_l[n] + \mathbf{Z}[n], n = 1, .., L$$

 ω_c is the carrier frequency, \mathbf{k}_l is the source direction, and $\mathbf{V}(\omega_c, \mathbf{k})$ is the array manifold and is the response of the array to a source at direction \mathbf{k} .

Far-Field model: $\mathbf{V}(\omega_c, \mathbf{k}) = [1, e^{-j\omega_c \tau_1(\mathbf{k})}, \dots, e^{-j\omega_c \tau_{N-1}(\mathbf{k})}]$ and a function of array geometry.

Narrow-band signal model for an array with N sensors.

$$\mathbf{y}(\omega_c, n) = \mathbf{V}(\omega_c, \mathbf{k}_0) x_0[n] + \sum_{l=1}^{D-1} \mathbf{V}(\omega_c, \mathbf{k}_l) x_l[n] + \mathbf{Z}[n], n = 1, .., L$$

 ω_c is the carrier frequency, \mathbf{k}_l is the source direction, and $\mathbf{V}(\omega_c, \mathbf{k})$ is the array manifold and is the response of the array to a source at direction \mathbf{k} .

Far-Field model: $\mathbf{V}(\omega_c, \mathbf{k}) = [1, e^{-j\omega_c \tau_1(\mathbf{k})}, \dots, e^{-j\omega_c \tau_{N-1}(\mathbf{k})}]$ and a function of array geometry.

Uniform Linear Array (ULA):

Narrow-band signal model for an array with N sensors.

$$\mathbf{y}(\omega_c, n) = \mathbf{V}(\omega_c, \mathbf{k}_0) x_0[n] + \sum_{l=1}^{D-1} \mathbf{V}(\omega_c, \mathbf{k}_l) x_l[n] + \mathbf{Z}[n], n = 1, .., L$$

 ω_c is the carrier frequency, \mathbf{k}_l is the source direction, and $\mathbf{V}(\omega_c, \mathbf{k})$ is the array manifold and is the response of the array to a source at direction \mathbf{k} .

Far-Field model: $\mathbf{V}(\omega_c, \mathbf{k}) = [1, e^{-j\omega_c \tau_1(\mathbf{k})}, \dots, e^{-j\omega_c \tau_{N-1}(\mathbf{k})}]$ and a function of array geometry.

Uniform Linear Array (ULA): Sensors placed on a line with a unform spacing of d.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Narrow-band signal model for an array with N sensors.

$$\mathbf{y}(\omega_c, n) = \mathbf{V}(\omega_c, \mathbf{k}_0) x_0[n] + \sum_{l=1}^{D-1} \mathbf{V}(\omega_c, \mathbf{k}_l) x_l[n] + \mathbf{Z}[n], n = 1, .., L$$

 ω_c is the carrier frequency, \mathbf{k}_l is the source direction, and $\mathbf{V}(\omega_c, \mathbf{k})$ is the array manifold and is the response of the array to a source at direction \mathbf{k} .

Far-Field model: $\mathbf{V}(\omega_c, \mathbf{k}) = [1, e^{-j\omega_c \tau_1(\mathbf{k})}, \dots, e^{-j\omega_c \tau_{N-1}(\mathbf{k})}]$ and a function of array geometry.

Uniform Linear Array (ULA): Sensors placed on a line with a unform spacing of d.

 $e^{-j\omega_c \tau_m(\mathbf{k}_l)} = e^{-j\omega_l m}$, with $\omega_m = 2\pi \frac{d}{\lambda} \cos(\theta_l)$ where θ_l is the elevation angle. Common to use $\frac{d}{\lambda} = \frac{1}{2}$

Narrow-band signal model for an array with N sensors.

$$\mathbf{y}(\omega_c, n) = \mathbf{V}(\omega_c, \mathbf{k}_0) x_0[n] + \sum_{l=1}^{D-1} \mathbf{V}(\omega_c, \mathbf{k}_l) x_l[n] + \mathbf{Z}[n], n = 1, .., L$$

 ω_c is the carrier frequency, \mathbf{k}_l is the source direction, and $\mathbf{V}(\omega_c, \mathbf{k})$ is the array manifold and is the response of the array to a source at direction \mathbf{k} .

Far-Field model: $\mathbf{V}(\omega_c, \mathbf{k}) = [1, e^{-j\omega_c \tau_1(\mathbf{k})}, \dots, e^{-j\omega_c \tau_{N-1}(\mathbf{k})}]$ and a function of array geometry.

Uniform Linear Array (ULA): Sensors placed on a line with a unform spacing of d.

 $e^{-j\omega_c \tau_m(\mathbf{k}_l)} = e^{-j\omega_l m}$, with $\omega_m = 2\pi \frac{d}{\lambda} \cos(\theta_l)$ where θ_l is the elevation angle. Common to use $\frac{d}{\lambda} = \frac{1}{2}$ So array manifold can be denoted by $\mathbf{V}(\omega_l)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Assumptions

◆□▶◆□▶◆≧▶◆≧▶ ≧ りへぐ

Assumptions

$$\mathbf{y}(n) = \sum_{l=0}^{D-1} \mathbf{V}(\omega_l) x_l[n] + \mathbf{Z}[n]$$
$$= [\mathbf{V}_0, \mathbf{V}_1, \dots, \mathbf{V}_{D-1}] \begin{bmatrix} x_0[n] \\ x_1[n] \\ \vdots \\ x_{D-1}[n] \end{bmatrix} + \mathbf{Z}[n]$$
$$= \mathbf{V} \mathbf{x}[n] + \mathbf{Z}[n]$$

where $\mathbf{V} \in C^{N \times D}$, and $\mathbf{x}[n] \in C^{D \times 1}$.

Assumptions

$$\mathbf{y}(n) = \sum_{l=0}^{D-1} \mathbf{V}(\omega_l) x_l[n] + \mathbf{Z}[n]$$
$$= [\mathbf{V}_0, \mathbf{V}_1, \dots, \mathbf{V}_{D-1}] \begin{bmatrix} x_0[n] \\ x_1[n] \\ \vdots \\ x_{D-1}[n] \end{bmatrix} + \mathbf{Z}[n]$$
$$= \mathbf{V} \mathbf{x}[n] + \mathbf{Z}[n]$$

where $\mathbf{V} \in C^{N \times D}$, and $\mathbf{x}[n] \in C^{D \times 1}$.

Assumptions: $E(\mathbf{x}[n]) = \mathbf{0}_{D \times 1}$, $E(\mathbf{x}[n]\mathbf{Z}^{H}[n]) = \mathbf{0}_{D \times N}$ and temporally uncorrelated.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Source Covariance matrix:

Source Covariance matrix: $\mathbf{R}_x = E(\mathbf{x}[n]\mathbf{x}^H[n])$ where $\mathbf{R}_x \in C^{D \times D}$, and the diagonal elements are $p_0, p_1, ..., p_{D-1}$, the source powers

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Source Covariance matrix: $\mathbf{R}_x = E(\mathbf{x}[n]\mathbf{x}^H[n])$ where $\mathbf{R}_x \in C^{D \times D}$, and the diagonal elements are $p_0, p_1, ..., p_{D-1}$, the source powers

For uncorrelated sources \mathbf{R}_x is a diagonal matrix, i.e. $\mathbf{R}_x = \text{diag}(p_0, p_1, \dots, p_{D-1}).$

Source Covariance matrix: $\mathbf{R}_x = E(\mathbf{x}[n]\mathbf{x}^H[n])$ where $\mathbf{R}_x \in C^{D \times D}$, and the diagonal elements are $p_0, p_1, ..., p_{D-1}$, the source powers

For uncorrelated sources \mathbf{R}_x is a diagonal matrix, i.e. $\mathbf{R}_x = \text{diag}(p_0, p_1, \dots, p_{D-1}).$

Data Covariance Matrix

$$\mathbf{R}_{y} = E(\mathbf{y}[n]\mathbf{y}^{H}[n]) = \mathbf{R}_{s} + \sigma_{z}^{2}\mathbf{I} = \mathbf{V}\mathbf{R}_{x}\mathbf{V}^{H} + \sigma_{z}^{2}\mathbf{I}$$
$$\mathbf{R}_{y} \in C^{N \times N}, \mathbf{R}_{s} \in C^{N \times N}, \mathbf{R}_{x} \in C^{D \times D}, \text{ and } \mathbf{V} \in C^{N \times D}$$

Source Covariance matrix: $\mathbf{R}_x = E(\mathbf{x}[n]\mathbf{x}^H[n])$ where $\mathbf{R}_x \in C^{D \times D}$, and the diagonal elements are $p_0, p_1, ..., p_{D-1}$, the source powers

For uncorrelated sources \mathbf{R}_x is a diagonal matrix, i.e. $\mathbf{R}_x = \text{diag}(p_0, p_1, \dots, p_{D-1}).$

Data Covariance Matrix

$$\begin{split} \mathbf{R}_{y} &= E(\mathbf{y}[n]\mathbf{y}^{H}[n]) = \mathbf{R}_{s} + \sigma_{z}^{2}\mathbf{I} = \mathbf{V}\mathbf{R}_{x}\mathbf{V}^{H} + \sigma_{z}^{2} \\ \mathbf{R}_{y} \in C^{N \times N}, \, \mathbf{R}_{s} \in C^{N \times N}, \, \mathbf{R}_{x} \in C^{D \times D}, \, \text{and} \, \, \mathbf{V} \in C^{N \times D} \end{split}$$

For ULA and uncorrelated sources, \mathbf{R}_{y} is a Toeplitz matrix.

Sparse Signal Recovery (SSR)

- y is a N × 1 measurement vector and x is M × 1 desired vector which is sparse with k non zero entries.
- Φ is $N \times M$ dictionary matrix where M >> N.

Sparse Signal Recovery (SSR)

- y is a N × 1 measurement vector and x is M × 1 desired vector which is sparse with k non zero entries.
- Φ is N × M dictionary matrix where M >> N. For array processing,
 Φ is obtained by employing a grid, i.e. /th column is V(ω_l).

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

Multiple Measurement Vectors (MMV)

Model

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Multiple measurements: L measurements
- Common Sparsity Profile: k nonzero rows

Beamforming(BF)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 りへぐ

Pick a direction of interest ω_s , and select the linear combining weights W such that $r[n] = W^H \mathbf{y}[n]$ contains mostly the signal from direction ω_s

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Pick a direction of interest ω_s , and select the linear combining weights W such that $r[n] = W^H \mathbf{y}[n]$ contains mostly the signal from direction ω_s

Conventional beamforming: $W = \mathbf{V}(\omega_s)$ and the power in direction ω_s is $E(|r[n]|^2) = \mathbf{V}(\omega_s)^H \mathbf{R}_y \mathbf{V}(\omega_s)$.
Pick a direction of interest ω_s , and select the linear combining weights W such that $r[n] = W^H \mathbf{y}[n]$ contains mostly the signal from direction ω_s

Conventional beamforming: $W = \mathbf{V}(\omega_s)$ and the power in direction ω_s is $E(|r[n]|^2) = \mathbf{V}(\omega_s)^H \mathbf{R}_y \mathbf{V}(\omega_s)$.

If you scan the spatial angles and look for the direction with most power, it has similarity to the search step of OMP.

Pick a direction of interest ω_s , and select the linear combining weights W such that $r[n] = W^H \mathbf{y}[n]$ contains mostly the signal from direction ω_s

Conventional beamforming: $W = \mathbf{V}(\omega_s)$ and the power in direction ω_s is $E(|r[n]|^2) = \mathbf{V}(\omega_s)^H \mathbf{R}_y \mathbf{V}(\omega_s)$.

If you scan the spatial angles and look for the direction with most power, it has similarity to the search step of OMP.

BF with Null constraints: Incorporate constraints, usually nulls in certain directions, in the BF design.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

ULA and Beamforming in Pictures

Figure: ULA on the z-axis

Figure: BF pattern(polar plot, N = 11)

(ロ)、

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Pick direction of interest ω_s

Pick direction of interest ω_s

Distortionless constraint on beamformer W: $W^H \mathbf{V}_s = 1$, where $\mathbf{V}_s = \mathbf{V}(\omega_s)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Pick direction of interest ω_s

Distortionless constraint on beamformer W: $W^H \mathbf{V}_s = 1$, where $\mathbf{V}_s = \mathbf{V}(\omega_s)$.

Minimum Power objective: Choose W to minimize $E(|W^{H}|\mathbf{y}[n]|^{2})$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Pick direction of interest ω_s

Distortionless constraint on beamformer W: $W^H \mathbf{V}_s = 1$, where $\mathbf{V}_s = \mathbf{V}(\omega_s)$.

Minimum Power objective: Choose W to minimize $E(|W^H|\mathbf{y}[n]|^2)$ MPDR BF design

$$\min_{W} W^{H} \mathbf{R}_{y} W \text{ subject to } W^{H} \mathbf{V}_{s} = 1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Pick direction of interest ω_s

Distortionless constraint on beamformer W: $W^H \mathbf{V}_s = 1$, where $\mathbf{V}_s = \mathbf{V}(\omega_s)$.

Minimum Power objective: Choose W to minimize $E(|W^H|\mathbf{y}[n]|^2)$ MPDR BF design

$$\min_{W} W^{H} \mathbf{R}_{y} W \text{ subject to } W^{H} \mathbf{V}_{s} = 1.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Solution: $W_{mpdr} = \frac{1}{\mathbf{V}_s^H \mathbf{R}_y^{-1} \mathbf{V}_s} \mathbf{R}_y^{-1} \mathbf{V}_s$

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$W_{mpdr} = rac{1}{\mathbf{V}_s^H \mathbf{R}_y^{-1} \mathbf{V}_s} \mathbf{R}_y^{-1} \mathbf{V}_s$$

$$W_{mpdr} = rac{1}{\mathbf{V}_s^H \mathbf{R}_y^{-1} \mathbf{V}_s} \mathbf{R}_y^{-1} \mathbf{V}_s$$

Benefit:

$$W_{mpdr} = rac{1}{\mathbf{V}_s^H \mathbf{R}_y^{-1} \mathbf{V}_s} \mathbf{R}_y^{-1} \mathbf{V}_s$$

Benefit:

R_y is easier to determine making it computationally attractive

$$\mathbf{R}_{y} \approx \frac{1}{L} \sum_{n=1}^{L-1} \mathbf{y}[n] \mathbf{y}^{H}[n]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$W_{mpdr} = rac{1}{\mathbf{V}_s^H \mathbf{R}_y^{-1} \mathbf{V}_s} \mathbf{R}_y^{-1} \mathbf{V}_s$$

Benefit:

R_y is easier to determine making it computationally attractive

$$\mathbf{R}_{y} \approx \frac{1}{L} \sum_{n=1}^{L-1} \mathbf{y}[n] \mathbf{y}^{H}[n]$$

Same R_y is needed if you change your mind on direction of interest. Can deal with multiple signals of interest with considerable ease.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$W_{mpdr} = rac{1}{\mathbf{V}_s^H \mathbf{R}_y^{-1} \mathbf{V}_s} \mathbf{R}_y^{-1} \mathbf{V}_s$$

Benefit:

R_y is easier to determine making it computationally attractive

$$\mathbf{R}_{y} \approx \frac{1}{L} \sum_{n=1}^{L-1} \mathbf{y}[n] \mathbf{y}^{H}[n]$$

 Same R_y is needed if you change your mind on direction of interest. Can deal with multiple signals of interest with considerable ease.

Spatial Power Spectrum using MPDR:

$$P_{mpdr}(\omega_s) = E(|W_{mpdr}^{H}\mathbf{y}[n]|^2) = W_{mpdr}^{H}\mathbf{R}_y W_{mpdr} = \frac{1}{\mathbf{V}_s^{H}\mathbf{R}_y^{-1}\mathbf{V}_s}$$

-1

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ● 臣 ● 9 Q @

$$W^{H}\mathbf{y}[n] = W^{H}\mathbf{V}_{s}x_{s}[n] + W^{H}\mathbf{I}[n]$$

= $\underbrace{x_{s}[n]}_{\text{distortionless constraint}} + q[n], \text{ where } q[n] = W^{H}\mathbf{I}[n]$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

$$W^{H}\mathbf{y}[n] = W^{H}\mathbf{V}_{s}x_{s}[n] + W^{H}\mathbf{I}[n]$$

= $\underbrace{x_{s}[n]}_{\text{distortionless constraint}} + q[n], \text{ where } q[n] = W^{H}\mathbf{I}[n]$

Minimum Power objective: Choose W to minimize $E(|W^H|\mathbf{y}[n]|^2)$, the power at the output of the beamformer

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$W^{H}\mathbf{y}[n] = W^{H}\mathbf{V}_{s}x_{s}[n] + W^{H}\mathbf{I}[n]$$

= $\underbrace{x_{s}[n]}_{\text{distortionless constraint}} + q[n], \text{ where } q[n] = W^{H}\mathbf{I}[n]$

Minimum Power objective: Choose W to minimize $E(|W^H|\mathbf{y}[n]|^2)$, the power at the output of the beamformer

If the interference is uncorrelated with the desired signal, then minimization of $E(|q[n]|^2)$ is achieved, i.e. interference is minimized.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$W^{H}\mathbf{y}[n] = W^{H}\mathbf{V}_{s}x_{s}[n] + W^{H}\mathbf{I}[n]$$

= $\underbrace{x_{s}[n]}_{\text{distortionless constraint}} + q[n], \text{ where } q[n] = W^{H}\mathbf{I}[n]$

Minimum Power objective: Choose W to minimize $E(|W^H|\mathbf{y}[n]|^2)$, the power at the output of the beamformer

If the interference is uncorrelated with the desired signal, then minimization of $E(|q[n]|^2)$ is achieved, i.e. interference is minimized.

Signal of interest has been isolated and interference minimized (SINR $\ensuremath{\mathsf{maximized}}\xspace$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$W^{H}\mathbf{y}[n] = W^{H}\mathbf{V}_{s}x_{s}[n] + W^{H}\mathbf{I}[n]$$

= $\underbrace{x_{s}[n]}_{\text{distortionless constraint}} + q[n], \text{ where } q[n] = W^{H}\mathbf{I}[n]$

Minimum Power objective: Choose W to minimize $E(|W^H|\mathbf{y}[n]|^2)$, the power at the output of the beamformer

If the interference is uncorrelated with the desired signal, then minimization of $E(|q[n]|^2)$ is achieved, i.e. interference is minimized.

Signal of interest has been isolated and interference minimized (SINR $\ensuremath{\mathsf{maximized}}\xspace$

If the interference is correlated with the desired source, we have cancellation and the desired source is not preserved.

MPDR: Uncorrelated sources

Figure: nsignals = 10 and nsensors = 12

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ(で)

MPDR: Beamformer for uncorrelated sources

Figure: nsignals = 10 and nsensors = 12

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

MPDR: correlated sources

Figure: nsignals = 10, two correlated, and nsensors = 12

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

 $\mathbf{y} = \mathbf{\Phi}\mathbf{x} + \mathbf{v}$

 $\mathbf{y} = \Phi \mathbf{x} + v$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

SBL uses a Bayesian framework with a separable prior $p(\mathbf{x}) = \prod p(x_i)$.

 $\mathbf{y} = \Phi \mathbf{x} + v$

SBL uses a Bayesian framework with a separable prior $p(\mathbf{x}) = \prod p(x_i)$. Gaussian Scale Mixtures (GSM)

$$p(x_i) = \int p(x_i|\gamma_i)p(\gamma_i)d\gamma_i = \int N(x_i; 0, \gamma_i)p(\gamma_i)d\gamma_i$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $\mathbf{y} = \Phi \mathbf{x} + v$

SBL uses a Bayesian framework with a separable prior $p(\mathbf{x}) = \prod p(x_i)$. Gaussian Scale Mixtures (GSM)

$$p(x_i) = \int p(x_i|\gamma_i)p(\gamma_i)d\gamma_i = \int N(x_i; 0, \gamma_i)p(\gamma_i)d\gamma_i$$

Theorem

A density p(x) which is symmetric with respect to the origin, can be represented by a GSM iff $p(\sqrt{x})$ is completely monotonic on $(0, \infty)$.

 $\mathbf{y} = \Phi \mathbf{x} + v$

SBL uses a Bayesian framework with a separable prior $p(\mathbf{x}) = \prod p(x_i)$. Gaussian Scale Mixtures (GSM)

$$p(x_i) = \int p(x_i|\gamma_i)p(\gamma_i)d\gamma_i = \int N(x_i; 0, \gamma_i)p(\gamma_i)d\gamma_i$$

Theorem

A density p(x) which is symmetric with respect to the origin, can be represented by a GSM iff $p(\sqrt{x})$ is completely monotonic on $(0, \infty)$.

Most of the interesting priors over x can be represented in this GSM form. [Palmer et al., 2006]

 $\mathbf{y} = \Phi \mathbf{x} + v$

SBL uses a Bayesian framework with a separable prior $p(\mathbf{x}) = \prod p(x_i)$. Gaussian Scale Mixtures (GSM)

$$p(x_i) = \int p(x_i|\gamma_i)p(\gamma_i)d\gamma_i = \int N(x_i; 0, \gamma_i)p(\gamma_i)d\gamma_i$$

Theorem

A density p(x) which is symmetric with respect to the origin, can be represented by a GSM iff $p(\sqrt{x})$ is completely monotonic on $(0, \infty)$.

Most of the interesting priors over x can be represented in this GSM form. [Palmer et al., 2006]

Definition

A function f(x) is completely monotonic on (a, b) if $(-1)^n f^{(n)}(x) \ge 0, \ n = 0, 1, ...,$ where $f^{(n)}(x)$ denotes the *n*th derivative

500

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

 $\underbrace{\gamma}_{p(\gamma)} \to X \sim N(x; 0, \gamma)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\underbrace{\gamma}_{p(\gamma)} \to X \sim N(x; 0, \gamma)$$

Alternatively

 $X=\sqrt{\gamma}G$

where $G \sim N(g; 0, 1)$ and γ and G are independent.

$$\underbrace{\gamma}_{p(\gamma)} \to X \sim N(x; 0, \gamma)$$

Alternatively

$$X = \sqrt{\gamma}G$$

where $G \sim N(g; 0, 1)$ and γ and G are independent.

Kurtosis: Note

$$E(X^2)=E(\gamma)E(G^2)=E(\gamma), ext{ and } E(X^4)=E(\gamma^2)E(G^4)=3E(\gamma^2)$$

$$\underbrace{\gamma}_{p(\gamma)} \to X \sim N(x; 0, \gamma)$$

Alternatively

 $X=\sqrt{\gamma}G$

where $G \sim N(g; 0, 1)$ and γ and G are independent.

Kurtosis: Note

$$E(X^2) = E(\gamma)E(G^2) = E(\gamma)$$
, and $E(X^4) = E(\gamma^2)E(G^4) = 3E(\gamma^2)$

$$\begin{aligned} \mathsf{Kurt}(X) &= E(X^4) - 3(E(X^2))^2 = 3E(\gamma^2) - 3(E(\gamma))^2 \\ &= 3(E(\gamma^2) - (E(\gamma))^2) = 3\mathsf{Var}(\gamma) \geq 0 \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Examples of Gaussian Scale Mixtures

Laplacian density

$$p(x;\beta) = \frac{1}{2\beta} exp(-\frac{|x|}{\beta})$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Scale mixing density: $p(\gamma) = \frac{1}{2\beta^2} \exp(-\frac{1}{2\beta^2}\gamma), \gamma \ge 0.$
Examples of Gaussian Scale Mixtures

Laplacian density

$$p(x;\beta) = \frac{1}{2\beta}exp(-\frac{|x|}{\beta})$$

Scale mixing density: $p(\gamma) = \frac{1}{2\beta^2} \exp(-\frac{1}{2\beta^2}\gamma), \gamma \ge 0.$

Student-t Distribution

$$p(x; a, b) = \frac{b^{a} \Gamma(a + 1/2)}{(2\pi)^{0.5} \Gamma(a)} \frac{1}{(b + x^{2}/2)^{a+1/2}}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Scale mixing density: Inverse-Gamma Distribution.

Examples of Gaussian Scale Mixtures

Laplacian density

$$p(x;\beta) = \frac{1}{2\beta}exp(-\frac{|x|}{\beta})$$

Scale mixing density: $p(\gamma) = \frac{1}{2\beta^2} \exp(-\frac{1}{2\beta^2}\gamma), \gamma \ge 0.$

Student-t Distribution

$$p(x; a, b) = \frac{b^{a}\Gamma(a+1/2)}{(2\pi)^{0.5}\Gamma(a)} \frac{1}{(b+x^{2}/2)^{a+1/2}}$$

Scale mixing density: Inverse-Gamma Distribution.

Generalized Gaussian

$$p(x;p) = \frac{1}{2\Gamma(1+\frac{1}{p})}e^{-|x|^p}$$

Scale mixing density: Positive alpha stable density of order p/2.

Two Options for Estimation with GSM priors

Two Options for Estimation with GSM priors

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

MAP Estimation (Type I)

Two Options for Estimation with GSM priors

MAP Estimation (Type I)

Evidence Maximization (Type II)

MAP Estimation Framework (Type I)

Problem Statement

$$\hat{x} = \arg \max_{x} p(x|y) = \arg \max_{x} p(y|x)p(x) = \arg \max_{x} [\log p(y|x) + \log p(x)]$$

¹Giri, R., and Rao, B. D. (2016). Type I and Type II Bayesian Methods for Sparse Signal Recovery Using Scale Mixtures. IEEE Trans. Signal Processing, 64(13), 3418-3428.

MAP Estimation Framework (Type I)

Problem Statement

$$\hat{x} = \arg \max_{x} p(x|y) = \arg \max_{x} p(y|x)p(x) = \arg \max_{x} [\log p(y|x) + \log p(x)]$$

Can derive a general version that includes many past reweighted algorithms using a generalized-t distribution in one setting¹

¹Giri, R., and Rao, B. D. (2016). Type I and Type II Bayesian Methods for Sparse Signal Recovery Using Scale Mixtures. IEEE Trans. Signal Processing, 64(13), 3418-3428.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Find a MAP estimate of γ , i.e. $\hat{\gamma} = \arg \max p(\gamma|y)$.

Find a MAP estimate of γ , i.e. $\hat{\gamma} = \arg \max p(\gamma|y)$. Estimate of the posterior distribution for x using estimated $\hat{\gamma}$; i.e. $p(x|y; \hat{\gamma})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Find a MAP estimate of γ , i.e. $\hat{\gamma} = \arg \max p(\gamma|y)$. Estimate of the posterior distribution for x using estimated $\hat{\gamma}$; i.e. $p(x|y; \hat{\gamma})$. This leads to Sparse Bayesian Learning (SBL).

Evidence Maximization Framework

Potential Advantages

• Averaging over x leads to fewer minima in $p(\gamma|y) = \int p(\gamma, x|y) dx$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Averaging over x leads to fewer minima in $p(\gamma|y) = \int p(\gamma, x|y) dx$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

 \blacktriangleright γ can tie several parameters, leading to fewer parameters.

• Averaging over x leads to fewer minima in $p(\gamma|y) = \int p(\gamma, x|y) dx$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 γ can tie several parameters, leading to fewer parameters. For MMV, a single γ_i for row i.

- Averaging over x leads to fewer minima in $p(\gamma|y) = \int p(\gamma, x|y) dx$.
- γ can tie several parameters, leading to fewer parameters. For MMV, a single γ_i for row i.
- Maximizing the true posterior mass over the subspaces spanned by non zero indexes instead of looking for the mode.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(4日) (個) (目) (目) (目) (の)()

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{v}$$

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{v}$$

Solving for MAP estimate of γ

$$\hat{\gamma} = rg\max_{\gamma} p(\gamma|y) = rg\max_{\gamma} p(y|\gamma) p(\gamma)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{v}$$

Solving for MAP estimate of γ

$$\hat{\gamma} = rg\max_{\gamma} p(\gamma|y) = rg\max_{\gamma} p(y|\gamma) p(\gamma)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

What is $p(y|\gamma)$

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{v}$$

Solving for MAP estimate of γ

$$\hat{\gamma} = rg\max_{\gamma} p(\gamma|y) = rg\max_{\gamma} p(y|\gamma) p(\gamma)$$

What is $p(y|\gamma)$

Given γ , **x** is Gaussian with mean zero and Covariance matrix Γ with $\Gamma = \text{diag}(\gamma)$, i.e. $p(x|\gamma) = N(x; 0, \Gamma) = \prod N(x_i; 0, \gamma_i)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{v}$$

Solving for MAP estimate of
$$\gamma$$

$$\hat{\gamma} = rg\max_{\gamma} p(\gamma|y) = rg\max_{\gamma} p(y|\gamma) p(\gamma)$$

What is $p(y|\gamma)$

Given γ , **x** is Gaussian with mean zero and Covariance matrix Γ with $\Gamma = \text{diag}(\gamma)$, i.e. $p(x|\gamma) = N(x; 0, \Gamma) = \prod N(x_i; 0, \gamma_i)$.

Then $p(y|\gamma) = N(y; 0, \Sigma_y)$, where $\Sigma_y = \sigma^2 I + \mathbf{A} \Gamma \mathbf{A}^T$,

$$p(y|\gamma) = \frac{1}{\sqrt{(2\pi)^N |\Sigma_y|}} e^{-\frac{1}{2}y^T \Sigma_y^{-1} y}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣��

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへの

$$\hat{\gamma} = \arg \max_{\gamma} p(\gamma|y) = \arg \max_{\gamma} p(y|\gamma) p(\gamma)$$

= $\arg \min_{\gamma} \log |\Sigma_y| + y^T \Sigma_y^{-1} y - 2 \sum_i \log p(\gamma_i)$
= $\arg \min_{\gamma} \log |\Sigma_y| + \operatorname{Trace} \Sigma_y^{-1} yy^T - 2 \sum_i \log p(\gamma_i)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

where, $\Sigma_y = \sigma^2 I + \mathbf{A} \Gamma \mathbf{A}^T$ and $\Gamma = \operatorname{diag}(\gamma)$

$$\hat{\gamma} = \arg \max_{\gamma} p(\gamma|y) = \arg \max_{\gamma} p(y|\gamma) p(\gamma)$$

= $\arg \min_{\gamma} \log |\Sigma_y| + y^T \Sigma_y^{-1} y - 2 \sum_i \log p(\gamma_i)$
= $\arg \min_{\gamma} \log |\Sigma_y| + \text{Trace } \Sigma_y^{-1} yy^T - 2 \sum_i \log p(\gamma_i)$

where, $\Sigma_y = \sigma^2 I + \mathbf{A} \Gamma \mathbf{A}^T$ and $\Gamma = \text{diag}(\gamma)$

For some of the discussion, we will ignore the prior on γ , i.e. $p(\gamma)$. This can be viewed as a non-informative prior on γ or γ as deterministic but unknown.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\hat{\gamma} = \arg \max_{\gamma} p(\gamma|y) = \arg \max_{\gamma} p(y|\gamma) p(\gamma)$$

= $\arg \min_{\gamma} \log |\Sigma_y| + y^T \Sigma_y^{-1} y - 2 \sum_i \log p(\gamma_i)$
= $\arg \min_{\gamma} \log |\Sigma_y| + \text{Trace } \Sigma_y^{-1} yy^T - 2 \sum_i \log p(\gamma_i)$

where, $\Sigma_y = \sigma^2 I + \mathbf{A} \Gamma \mathbf{A}^T$ and $\Gamma = \text{diag}(\gamma)$

For some of the discussion, we will ignore the prior on γ , i.e. $p(\gamma)$. This can be viewed as a non-informative prior on γ or γ as deterministic but unknown.

Given the separable nature of the prior, the prior is easy to incorporate.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

$$\hat{\gamma} = \arg \max_{\gamma} p(\gamma|y) = \arg \max_{\gamma} p(y|\gamma) p(\gamma)$$

= $\arg \min_{\gamma} \log |\Sigma_y| + y^T \Sigma_y^{-1} y - 2 \sum_i \log p(\gamma_i)$
= $\arg \min_{\gamma} \log |\Sigma_y| + \operatorname{Trace} \Sigma_y^{-1} yy^T - 2 \sum_i \log p(\gamma_i)$

where, $\Sigma_y = \sigma^2 I + \mathbf{A} \Gamma \mathbf{A}^T$ and $\Gamma = \text{diag}(\gamma)$

For some of the discussion, we will ignore the prior on γ , i.e. $p(\gamma)$. This can be viewed as a non-informative prior on γ or γ as deterministic but unknown.

Given the separable nature of the prior, the prior is easy to incorporate.

For MMV

$$\hat{\gamma} = rg\min_{\gamma} \log |\Sigma_{y}| + \text{Trace } \Sigma_{y}^{-1} \hat{\mathbf{R}}_{y} - \frac{2}{L} \sum_{i} \log p(\gamma_{i})$$

where $\hat{\mathbf{R}}_{y} = \frac{1}{L} \sum_{n=1}^{L} \mathbf{y}[n] \mathbf{y}^{T}[n]$

- Fixed Point iteration based on setting the derivative of the objective function to zero (Tipping)
- Expectation-Maximization (EM) Algorithm
- Sequential search for the significant γ 's (Tipping and Faul)
- Majorization-Minimization based approach (Wipf and Nagarajan)
- Reweighted l₁ and l₂ algorithms (Wipf and Nagarajan)
- Approximate Message Passing (AlShoukairi, Schniter and Rao)

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{v}$$

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{v}$$

Now because of our convenient GSM choice, posterior can be easily computed, i.e, $p(x|y; \hat{\gamma}) = N(\mu_x, \Sigma_x)$ where,

$$\mu_{x} = E[x|y;\hat{\gamma}] = \hat{\Gamma} \mathbf{A}^{T} \Sigma_{y}^{-1} \mathbf{y} = \hat{\Gamma} \mathbf{A}^{T} (\sigma^{2} \mathbf{I} + \mathbf{A} \hat{\Gamma} \mathbf{A}^{T})^{-1} \mathbf{y}$$
$$\Sigma_{\tilde{x}} = Cov[x|y;\hat{\gamma}] = \hat{\Gamma} - \hat{\Gamma} \mathbf{A}^{T} \Sigma_{y}^{-1} \mathbf{A} \hat{\Gamma} = \hat{\Gamma} - \hat{\Gamma} \mathbf{A}^{T} (\sigma^{2} \mathbf{I} + \mathbf{A} \hat{\Gamma} \mathbf{A}^{T})^{-1} \mathbf{A} \hat{\Gamma}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{v}$$

Now because of our convenient GSM choice, posterior can be easily computed, i.e, $p(x|y; \hat{\gamma}) = N(\mu_x, \Sigma_x)$ where,

$$\mu_{x} = E[x|y;\hat{\gamma}] = \hat{\Gamma} \mathbf{A}^{T} \Sigma_{y}^{-1} \mathbf{y} = \hat{\Gamma} \mathbf{A}^{T} (\sigma^{2} \mathbf{I} + \mathbf{A} \hat{\Gamma} \mathbf{A}^{T})^{-1} \mathbf{y}$$

$$\Sigma_{\tilde{x}} = Cov[x|y;\hat{\gamma}] = \hat{\Gamma} - \hat{\Gamma}\mathbf{A}^{T}\Sigma_{y}^{-1}\mathbf{A}\hat{\Gamma} = \hat{\Gamma} - \hat{\Gamma}\mathbf{A}^{T}(\sigma^{2}I + \mathbf{A}\hat{\Gamma}\mathbf{A}^{T})^{-1}\mathbf{A}\hat{\Gamma}$$

 μ_x can be used as a point estimate.

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{v}$$

Now because of our convenient GSM choice, posterior can be easily computed, i.e, $p(x|y; \hat{\gamma}) = N(\mu_x, \Sigma_x)$ where,

$$\mu_{\mathbf{x}} = E[\mathbf{x}|\mathbf{y};\hat{\gamma}] = \hat{\Gamma} \mathbf{A}^{T} \boldsymbol{\Sigma}_{\mathbf{y}}^{-1} \mathbf{y} = \hat{\Gamma} \mathbf{A}^{T} (\sigma^{2} \mathbf{I} + \mathbf{A} \hat{\Gamma} \mathbf{A}^{T})^{-1} \mathbf{y}$$

$$\boldsymbol{\Sigma}_{\tilde{\boldsymbol{x}}} = \textit{Cov}[\boldsymbol{x}|\boldsymbol{y}; \hat{\boldsymbol{\gamma}}] = \hat{\boldsymbol{\Gamma}} - \hat{\boldsymbol{\Gamma}} \boldsymbol{A}^{T} \boldsymbol{\Sigma}_{\boldsymbol{y}}^{-1} \boldsymbol{A} \hat{\boldsymbol{\Gamma}} = \hat{\boldsymbol{\Gamma}} - \hat{\boldsymbol{\Gamma}} \boldsymbol{A}^{T} (\sigma^{2} \boldsymbol{I} + \boldsymbol{A} \hat{\boldsymbol{\Gamma}} \boldsymbol{A}^{T})^{-1} \boldsymbol{A} \hat{\boldsymbol{\Gamma}}$$

 μ_x can be used as a point estimate. Sparsity is achieved by having many of the γ_i 's have zero value.

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{v}$$

Now because of our convenient GSM choice, posterior can be easily computed, i.e, $p(x|y; \hat{\gamma}) = N(\mu_x, \Sigma_x)$ where,

$$\mu_{\mathbf{x}} = E[\mathbf{x}|\mathbf{y};\hat{\gamma}] = \hat{\Gamma} \mathbf{A}^{T} \boldsymbol{\Sigma}_{\mathbf{y}}^{-1} \mathbf{y} = \hat{\Gamma} \mathbf{A}^{T} (\sigma^{2} \mathbf{I} + \mathbf{A} \hat{\Gamma} \mathbf{A}^{T})^{-1} \mathbf{y}$$

$$\boldsymbol{\Sigma}_{\tilde{\boldsymbol{x}}} = \textit{Cov}[\boldsymbol{x}|\boldsymbol{y}; \hat{\boldsymbol{\gamma}}] = \hat{\boldsymbol{\Gamma}} - \hat{\boldsymbol{\Gamma}} \boldsymbol{A}^{T} \boldsymbol{\Sigma}_{\boldsymbol{y}}^{-1} \boldsymbol{A} \hat{\boldsymbol{\Gamma}} = \hat{\boldsymbol{\Gamma}} - \hat{\boldsymbol{\Gamma}} \boldsymbol{A}^{T} (\sigma^{2} \boldsymbol{I} + \boldsymbol{A} \hat{\boldsymbol{\Gamma}} \boldsymbol{A}^{T})^{-1} \boldsymbol{A} \hat{\boldsymbol{\Gamma}}$$

 μ_x can be used as a point estimate. Sparsity is achieved by having many of the γ_i 's have zero value.

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{v}$$

Now because of our convenient GSM choice, posterior can be easily computed, i.e, $p(x|y; \hat{\gamma}) = N(\mu_x, \Sigma_x)$ where,

$$\mu_{\mathsf{x}} = E[\mathsf{x}|\mathsf{y};\hat{\gamma}] = \hat{\Gamma} \mathbf{A}^{\mathsf{T}} \boldsymbol{\Sigma}_{\mathsf{y}}^{-1} \mathbf{y} = \hat{\Gamma} \mathbf{A}^{\mathsf{T}} (\sigma^2 \mathbf{I} + \mathbf{A} \hat{\Gamma} \mathbf{A}^{\mathsf{T}})^{-1} \mathbf{y}$$

$$\boldsymbol{\Sigma}_{\tilde{\boldsymbol{x}}} = \textit{Cov}[\boldsymbol{x}|\boldsymbol{y}; \hat{\boldsymbol{\gamma}}] = \hat{\boldsymbol{\Gamma}} - \hat{\boldsymbol{\Gamma}} \boldsymbol{A}^{T} \boldsymbol{\Sigma}_{\boldsymbol{y}}^{-1} \boldsymbol{A} \hat{\boldsymbol{\Gamma}} = \hat{\boldsymbol{\Gamma}} - \hat{\boldsymbol{\Gamma}} \boldsymbol{A}^{T} (\sigma^{2} \boldsymbol{I} + \boldsymbol{A} \hat{\boldsymbol{\Gamma}} \boldsymbol{A}^{T})^{-1} \boldsymbol{A} \hat{\boldsymbol{\Gamma}}$$

 μ_x can be used as a point estimate. Sparsity is achieved by having many of the γ_i 's have zero value.

The conditional mean and variance computation constitute a LMMSE BF!

EM algorithm: Updating γ

EM algorithm: Updating γ

Treating (\mathbf{y}, \mathbf{x}) as complete data and vector \mathbf{x} as hidden variable.

 $\log p(y, x, \gamma) = \log p(y|x) + \log p(x|\gamma) + \log p(\gamma)$
EM algorithm: Updating γ

Treating (\mathbf{y}, \mathbf{x}) as complete data and vector \mathbf{x} as hidden variable.

$$\log p(y, x, \gamma) = \log p(y|x) + \log p(x|\gamma) + \log p(\gamma)$$

E step

$$Q(\gamma|\gamma^k) = \mathbb{E}_{x|y;\gamma^k}[\log p(y|x) + \log p(x|\gamma) + \log p(\gamma)]$$

EM algorithm: Updating γ

Treating (\mathbf{y}, \mathbf{x}) as complete data and vector \mathbf{x} as hidden variable.

$$\log p(y, x, \gamma) = \log p(y|x) + \log p(x|\gamma) + \log p(\gamma)$$

E step

$$Q(\gamma|\gamma^k) = \mathbb{E}_{x|y;\gamma^k}[\log p(y|x) + \log p(x|\gamma) + \log p(\gamma)]$$

M step

$$egin{aligned} &\gamma^{k+1} = \operatorname{argmax}_{\gamma} \mathcal{Q}(\gamma|\gamma^k) = \operatorname{argmax}_{\gamma} \mathbb{E}_{\mathbf{x}|y;\gamma^k}[\log p(\mathbf{x}|\gamma) + \log p(\gamma)] \ &= \operatorname{argmin}_{\gamma} \mathbb{E}_{\mathbf{x}|y;\gamma^k}[\sum_{i=1}^M \left(rac{x_i^2}{2\gamma_i} + rac{1}{2}\log \gamma_i
ight) - \log p(\gamma)] \end{aligned}$$

The optimization involves M scalar optimization problems of the form

$$J(\gamma_l) = \frac{E(x_l^2 | \mathbf{y}, \gamma^k)}{2\gamma_l} + \frac{1}{2} \log \gamma_l - \log p(\gamma_l)$$

Scalar Optimization

$$J(\gamma_l) = \frac{E(x_l^2 | \mathbf{y}, \gamma^k)}{2\gamma_l} + \frac{1}{2} \log \gamma_l - \log p(\gamma_l)$$

Note that $E(x_l^2 | \mathbf{y}, \gamma^k) = \mu_x^{(k)}(l)^2 + \Sigma_{\tilde{x}}^{(k)}(l, l)$
Non-informative prior results in an objective function

 $J(\gamma_l) = \frac{E(x_l^2 | \mathbf{y}, \gamma^k)}{2\gamma_l} + \frac{1}{2} \log \gamma_l$

Update equation

$$\gamma_l^{k+1} = E(x_l^2 | \mathbf{y}, \gamma^k) = \mu_x^{(k)}(l)^2 + \Sigma_{\tilde{x}}^{(k)}(l, l)$$

Scalar Optimization

$$J(\gamma_l) = \frac{E(x_l^2 | \mathbf{y}, \gamma^k)}{2\gamma_l} + \frac{1}{2} \log \gamma_l - \log p(\gamma_l)$$

Note that $E(x_l^2 | \mathbf{y}, \gamma^k) = \mu_x^{(k)}(l)^2 + \Sigma_{\tilde{x}}^{(k)}(l, l)$

Non-informative prior results in an objective function

$$J(\gamma_l) = \frac{E(x_l^2 | \mathbf{y}, \gamma^k)}{2\gamma_l} + \frac{1}{2} \log \gamma_l$$

Update equation

$$\gamma_l^{k+1} = E(x_l^2 | \mathbf{y}, \gamma^k) = \mu_x^{(k)}(l)^2 + \Sigma_{\tilde{x}}^{(k)}(l, l)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Source powers updated in an iterated manner

Connection between SBL and MPDR

LMMSE Beamformer viewed as a MPDR beamformer followed by scaling for the uncorrelated source case

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Connection between SBL and MPDR

LMMSE Beamformer viewed as a MPDR beamformer followed by scaling for the uncorrelated source case

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Note: $r[n] = x_s[n] + q[n]$

(a) MPDR Based Algorithm

(b) EM-SBL Algorithm

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

(a) MPDR Based Algorithm

(b) EM-SBL Algorithm

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

When p(x_n) = N(0, p_n) the MPDR + MMSE steps are equivalent to the LMMSE step in the EM SBL and the two algorithm are equivalent.

(a) MPDR Based Algorithm

(b) EM-SBL Algorithm

・ロト・日本・日本・日本・日本・日本

- When p(x_n) = N(0, p_n) the MPDR + MMSE steps are equivalent to the LMMSE step in the EM SBL and the two algorithm are equivalent.
- More general priors can be used within the MPDR framework. The EM-SBL has a closed form solution for the GSM prior only.

◆□▶◆□▶◆≧▶◆≧▶ ≧ りへぐ

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

MPDR:

MPDR:

1.
$$\mathbf{y}[n] \rightarrow \hat{\mathbf{R}}_{y} = \frac{1}{L} \sum_{n=1}^{L} \mathbf{y}[n] \mathbf{y}^{H}[n]$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

MPDR:

1.
$$\mathbf{y}[n] \rightarrow \hat{\mathbf{R}}_{y} = \frac{1}{L} \sum_{n=1}^{L} \mathbf{y}[n] \mathbf{y}^{H}[n]$$

2. MPDR BF using $\hat{\mathbf{R}}_{y}$, i.e. $W_{mpdr} = \frac{1}{\mathbf{V}_{s}^{H} \hat{\mathbf{R}}_{y}^{-1} \mathbf{V}_{s}} \hat{\mathbf{R}}_{y}^{-1} \mathbf{V}_{s}$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

MPDR:

- 1. $\mathbf{y}[n] \rightarrow \hat{\mathbf{R}}_y = \frac{1}{L} \sum_{n=1}^{L} \mathbf{y}[n] \mathbf{y}^H[n]$
- 2. MPDR BF using $\hat{\mathbf{R}}_{y}$, i.e. $W_{mpdr} = \frac{1}{\mathbf{V}_{s}^{H} \hat{\mathbf{R}}_{y}^{-1} \mathbf{V}_{s}} \hat{\mathbf{R}}_{y}^{-1} \mathbf{V}_{s}$

MPDR:

1.
$$\mathbf{y}[n] \rightarrow \hat{\mathbf{R}}_{y} = \frac{1}{L} \sum_{n=1}^{L} \mathbf{y}[n] \mathbf{y}^{H}[n]$$

2. MPDR BF using $\hat{\mathbf{R}}_{y}$, i.e. $W_{mpdr} = \frac{1}{\mathbf{V}_{s}^{H} \hat{\mathbf{R}}_{y}^{-1} \mathbf{V}_{s}} \hat{\mathbf{R}}_{y}^{-1} \mathbf{V}_{s}$

3. MPDR spatial power spectrum $P_{mpdr}(\omega_s) = \frac{1}{\mathbf{V}_s^{\prime\prime} \hat{\mathbf{R}}_y^{-1} \mathbf{V}_s}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

SBL

MPDR:

1.
$$\mathbf{y}[n] \rightarrow \hat{\mathbf{R}}_{y} = \frac{1}{L} \sum_{n=1}^{L} \mathbf{y}[n] \mathbf{y}^{H}[n]$$

- 2. MPDR BF using $\hat{\mathbf{R}}_{y}$, i.e. $W_{mpdr} = \frac{1}{\mathbf{V}_{s}^{H} \hat{\mathbf{R}}_{y}^{-1} \mathbf{V}_{s}} \hat{\mathbf{R}}_{y}^{-1} \mathbf{V}_{s}$

SBL

1. Guess power of sources γ and employ uncorrelated model for correlation matrix $\Sigma_{\gamma} = \Phi \Gamma \Phi^{T} + \lambda \mathbf{I}$, where $\Gamma = \text{diag}(\gamma)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

MPDR:

1.
$$\mathbf{y}[n] \rightarrow \hat{\mathbf{R}}_{y} = \frac{1}{L} \sum_{n=1}^{L} \mathbf{y}[n] \mathbf{y}^{H}[n]$$

- 2. MPDR BF using $\hat{\mathbf{R}}_{y}$, i.e. $W_{mpdr} = \frac{1}{\mathbf{V}_{s}^{H} \hat{\mathbf{R}}_{y}^{-1} \mathbf{V}_{s}} \hat{\mathbf{R}}_{y}^{-1} \mathbf{V}_{s}$

SBL

1. Guess power of sources γ and employ uncorrelated model for correlation matrix $\Sigma_{\gamma} = \Phi \Gamma \Phi^{T} + \lambda \mathbf{I}$, where $\Gamma = \text{diag}(\gamma)$.

2. MPDR BF using Σ_y , i.e. $W_{mpdr} = \frac{1}{\mathbf{V}_s^H \Sigma_y^{-1} \mathbf{V}_s} \Sigma_y^{-1} \mathbf{V}_s$

MPDR:

1.
$$\mathbf{y}[n] \rightarrow \hat{\mathbf{R}}_{y} = \frac{1}{L} \sum_{n=1}^{L} \mathbf{y}[n] \mathbf{y}^{H}[n]$$

- 2. MPDR BF using $\hat{\mathbf{R}}_{y}$, i.e. $W_{mpdr} = \frac{1}{\mathbf{V}_{s}^{H} \hat{\mathbf{R}}_{y}^{-1} \mathbf{V}_{s}} \hat{\mathbf{R}}_{y}^{-1} \mathbf{V}_{s}$
- 3. MPDR spatial power spectrum $P_{mpdr}(\omega_s) = \frac{1}{\mathbf{V}_s^{\scriptscriptstyle H} \hat{\mathbf{R}}_y^{-1} \mathbf{V}_s}$

SBL

- 1. Guess power of sources γ and employ uncorrelated model for correlation matrix $\Sigma_{\gamma} = \Phi \Gamma \Phi^{T} + \lambda \mathbf{I}$, where $\Gamma = \text{diag}(\gamma)$.
- 2. MPDR BF using Σ_y , i.e. $W_{mpdr} = \frac{1}{\mathbf{V}_s^H \Sigma_y^{-1} \mathbf{V}_s} \Sigma_y^{-1} \mathbf{V}_s$
- Apply BF to data y[n], use BF output to compute new source power estimate, and update Σ_y

MPDR:

1.
$$\mathbf{y}[n] \rightarrow \hat{\mathbf{R}}_{y} = \frac{1}{L} \sum_{n=1}^{L} \mathbf{y}[n] \mathbf{y}^{H}[n]$$

- 2. MPDR BF using $\hat{\mathbf{R}}_{y}$, i.e. $W_{mpdr} = \frac{1}{\mathbf{V}_{s}^{H} \hat{\mathbf{R}}_{y}^{-1} \mathbf{V}_{s}} \hat{\mathbf{R}}_{y}^{-1} \mathbf{V}_{s}$

SBL

- 1. Guess power of sources γ and employ uncorrelated model for correlation matrix $\Sigma_{\gamma} = \Phi \Gamma \Phi^{T} + \lambda \mathbf{I}$, where $\Gamma = \text{diag}(\gamma)$.
- 2. MPDR BF using Σ_y , i.e. $W_{mpdr} = \frac{1}{\mathbf{V}_s^H \Sigma_y^{-1} \mathbf{V}_s} \Sigma_y^{-1} \mathbf{V}_s$
- Apply BF to data y[n], use BF output to compute new source power estimate, and update Σ_y

4. Repeat steps 2 and 3 till convergence

<ロト < 回 ト < 三 ト < 三 ト 三 の < ()</p>

 $\mathbf{R}_{y} = \mathbf{R}_{s} + \sigma^{2} \mathbf{I}$ and \mathbf{R}_{s} is low rank and Toeplitz for uncorrelated sources

 $\mathbf{R}_{y} = \mathbf{R}_{s} + \sigma^{2}\mathbf{I}$ and \mathbf{R}_{s} is low rank and Toeplitz for uncorrelated sources Theorem: A low rank Toeplitz \mathbf{R} , rank D, is uniquely represented as $\mathbf{R} = \sum_{l=1}^{D} \lambda_{l} \mathbf{V}(\omega_{l}) \mathbf{V}^{H}(\omega_{l})$

 $\mathbf{R}_{y} = \mathbf{R}_{s} + \sigma^{2}\mathbf{I}$ and \mathbf{R}_{s} is low rank and Toeplitz for uncorrelated sources Theorem: A low rank Toeplitz \mathbf{R} , rank D, is uniquely represented as $\mathbf{R} = \sum_{l=1}^{D} \lambda_{l} \mathbf{V}(\omega_{l}) \mathbf{V}^{H}(\omega_{l})$

 $\Sigma_y = \sum_{l=1}^M \gamma_l \mathbf{V}(\omega_l) \mathbf{V}^H(\omega_l) + \lambda \mathbf{I}$ in SBL has the appropriate structure.

 $\mathbf{R}_{y} = \mathbf{R}_{s} + \sigma^{2}\mathbf{I}$ and \mathbf{R}_{s} is low rank and Toeplitz for uncorrelated sources Theorem: A low rank Toeplitz \mathbf{R} , rank D, is uniquely represented as $\mathbf{R} = \sum_{l=1}^{D} \lambda_{l} \mathbf{V}(\omega_{l}) \mathbf{V}^{H}(\omega_{l})$ $\Sigma_{y} = \sum_{l=1}^{M} \gamma_{l} \mathbf{V}(\omega_{l}) \mathbf{V}^{H}(\omega_{l}) + \lambda \mathbf{I}$ in SBL has the appropriate structure. ML estimate: As $L \to \infty$, $KL(p^{*}||p)$ is minimized, where p is the model assumed by SBL, i.e. $p(y; \Sigma_{y})$, and p^{*} is the actual data density, i.e. $p(y; \mathbf{R}_{y})$.

$$\begin{split} \mathbf{R}_{y} &= \mathbf{R}_{s} + \sigma^{2} \mathbf{I} \text{ and } \mathbf{R}_{s} \text{ is low rank and Toeplitz for uncorrelated sources} \\ \text{Theorem: A low rank Toeplitz } \mathbf{R}, \text{ rank } D, \text{ is uniquely represented as} \\ \mathbf{R} &= \sum_{l=1}^{D} \lambda_{l} \mathbf{V}(\omega_{l}) \mathbf{V}^{H}(\omega_{l}) \\ \Sigma_{y} &= \sum_{l=1}^{M} \gamma_{l} \mathbf{V}(\omega_{l}) \mathbf{V}^{H}(\omega_{l}) + \lambda \mathbf{I} \text{ in SBL has the appropriate structure.} \\ \text{ML estimate: As } L \to \infty, \ KL(p^{*}||p) \text{ is minimized, where } p \text{ is the model} \\ \text{assumed by SBL, i.e. } p(y; \Sigma_{y}), \text{ and } p^{*} \text{ is the actual data density, i.e.} \\ p(y; \mathbf{R}_{y}). \end{split}$$

Uncorrelated sources: then true model and SBL model is the same and SBL is finding a ML estimate of a Toeplitz matrix.

$$\begin{split} \mathbf{R}_{y} &= \mathbf{R}_{s} + \sigma^{2} \mathbf{I} \text{ and } \mathbf{R}_{s} \text{ is low rank and Toeplitz for uncorrelated sources} \\ \text{Theorem: A low rank Toeplitz } \mathbf{R}, \text{ rank } D, \text{ is uniquely represented as} \\ \mathbf{R} &= \sum_{l=1}^{D} \lambda_{l} \mathbf{V}(\omega_{l}) \mathbf{V}^{H}(\omega_{l}) \\ \Sigma_{y} &= \sum_{l=1}^{M} \gamma_{l} \mathbf{V}(\omega_{l}) \mathbf{V}^{H}(\omega_{l}) + \lambda \mathbf{I} \text{ in SBL has the appropriate structure.} \\ \text{ML estimate: As } L \to \infty, \ KL(p^{*}||p) \text{ is minimized, where } p \text{ is the model} \\ \text{assumed by SBL, i.e. } p(y; \Sigma_{y}), \text{ and } p^{*} \text{ is the actual data density, i.e.} \\ p(y; \mathbf{R}_{y}). \end{split}$$

Uncorrelated sources: then true model and SBL model is the same and SBL is finding a ML estimate of a Toeplitz matrix.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Correlated sources: True model \mathbf{R}_{y} is no longer Toeplitz and SBL is finding the best Toeplitz matrix in the KL sense.

$$\begin{split} \mathbf{R}_{y} &= \mathbf{R}_{s} + \sigma^{2} \mathbf{I} \text{ and } \mathbf{R}_{s} \text{ is low rank and Toeplitz for uncorrelated sources} \\ \text{Theorem: A low rank Toeplitz } \mathbf{R}, \text{ rank } D, \text{ is uniquely represented as} \\ \mathbf{R} &= \sum_{l=1}^{D} \lambda_{l} \mathbf{V}(\omega_{l}) \mathbf{V}^{H}(\omega_{l}) \\ \Sigma_{y} &= \sum_{l=1}^{M} \gamma_{l} \mathbf{V}(\omega_{l}) \mathbf{V}^{H}(\omega_{l}) + \lambda \mathbf{I} \text{ in SBL has the appropriate structure.} \\ \text{ML estimate: As } L \to \infty, \ KL(p^{*}||p) \text{ is minimized, where } p \text{ is the model} \\ \text{assumed by SBL, i.e. } p(y; \Sigma_{y}), \text{ and } p^{*} \text{ is the actual data density, i.e.} \\ p(y; \mathbf{R}_{y}). \end{split}$$

Uncorrelated sources: then true model and SBL model is the same and SBL is finding a ML estimate of a Toeplitz matrix.

Correlated sources: True model \mathbf{R}_{y} is no longer Toeplitz and SBL is finding the best Toeplitz matrix in the KL sense.

The uncorrelated source model allows SBL to be largely unaffected by correlated sources.

MPDR: Uncorrelated sources

Figure: nsignals = 10 and nsensors = 12

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ(で)

MPDR: correlated sources

Figure: nsignals = 10, two correlated, and nsensors = 12

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Correlated signals with MUSIC

Figure: MUSIC: nsignals = 10 (Last two correlated), nsensors = 12

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

SBL to the rescue!

Figure: SBL: nsignals = 10 (Last two correlated), nsensors = 12

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Beam Space processing and Nested Arrays

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Consider $\mathbf{y}_{na}[n] = \mathbf{Sy}[n]$, where **S** is user chosen and $\mathbf{S}^{P \times N}$, with $P \leq N$.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Consider $\mathbf{y}_{na}[n] = \mathbf{Sy}[n]$, where **S** is user chosen and $\mathbf{S}^{P \times N}$, with $P \leq N$.

Options

Consider $\mathbf{y}_{na}[n] = \mathbf{Sy}[n]$, where **S** is user chosen and $\mathbf{S}^{P \times N}$, with $P \leq N$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Options

Could be a random matrix as in CS
Consider $\mathbf{y}_{na}[n] = \mathbf{Sy}[n]$, where **S** is user chosen and $\mathbf{S}^{P \times N}$, with $P \leq N$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Options

- Could be a random matrix as in CS
- Could be chosen to cover a region in space

Consider $\mathbf{y}_{na}[n] = \mathbf{Sy}[n]$, where **S** is user chosen and $\mathbf{S}^{P \times N}$, with $P \leq N$.

Options

- Could be a random matrix as in CS
- Could be chosen to cover a region in space
- Could be used to thin the array (low complexity sensor array)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Nested Arrays: Structure & Properties

M²/2+M-1 elements

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Nested Arrays: Structure & Properties

M²/2+M-1 elements

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

► A nested array with N antennas has a filled difference set with O(N²) elements

Nested Arrays: Structure & Properties

► A nested array with N antennas has a filled difference set with O(N²) elements

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Drastically increases the spatial degrees of freedom

Nested Arrays: Structure & Properties

- ► A nested array with N antennas has a filled difference set with O(N²) elements
- Drastically increases the spatial degrees of freedom
- For source localization, this results in estimating location of more sources than sensors!

DoA Estimation with Nested Arrays²

With Nested Arrays, we can transform an order-N covariance matrix into order- $\frac{N^2+2N}{4}$ Toeplitz matrix

Transformation:

²Pal, P., and Vaidyanathan, P. P. (2010). Nested arrays: A novel approach to array processing with enhanced degrees of freedom. IEEE Transactions on Signal Processing, 58(8), 4167-4181.

DoA Estimation with Nested Arrays²

With Nested Arrays, we can transform an order-N covariance matrix into order- $\frac{N^2+2N}{4}$ Toeplitz matrix

Transformation:

Consider as an example N = 4, nested array sensor positions: $\{1, 2, 3, 6\}$

$$\begin{bmatrix} R_0 & R_{-1} & R_{-2} & R_{-5} \\ R_1 & R_0 & R_{-1} & R_{-4} \\ R_2 & R_1 & R_0 & R_{-3} \\ R_5 & R_4 & R_3 & R_0 \end{bmatrix} \rightarrow \begin{bmatrix} R_0 & R_{-1} & R_{-2} & R_{-3} & R_{-4} & R_{-5} \\ R_1 & R_0 & R_{-1} & R_{-2} & R_{-3} & R_{-4} \\ R_2 & R_1 & R_0 & R_{-1} & R_{-2} & R_{-3} \\ R_3 & R_2 & R_1 & R_0 & R_{-1} & R_{-2} \\ R_4 & R_3 & R_2 & R_1 & R_0 & R_{-1} \\ R_5 & R_4 & R_3 & R_2 & R_1 & R_0 \end{bmatrix}$$

²Pal, P., and Vaidyanathan, P. P. (2010). Nested arrays: A novel approach to array processing with enhanced degrees of freedom. IEEE Transactions on Signal Processing, 58(8), 4167-4181.

DoA Estimation with Nested Arrays²

With Nested Arrays, we can transform an order-N covariance matrix into order- $\frac{N^2+2N}{4}$ Toeplitz matrix

Transformation:

Consider as an example N = 4, nested array sensor positions: $\{1, 2, 3, 6\}$

$$\begin{bmatrix} R_0 & R_{-1} & R_{-2} & R_{-5} \\ R_1 & R_0 & R_{-1} & R_{-4} \\ R_2 & R_1 & R_0 & R_{-3} \\ R_5 & R_4 & R_3 & R_0 \end{bmatrix} \rightarrow \begin{bmatrix} R_0 & R_{-1} & R_{-2} & R_{-3} & R_{-4} & R_{-5} \\ R_1 & R_0 & R_{-1} & R_{-2} & R_{-3} & R_{-4} \\ R_2 & R_1 & R_0 & R_{-1} & R_{-2} & R_{-3} \\ R_3 & R_2 & R_1 & R_0 & R_{-1} & R_{-2} \\ R_4 & R_3 & R_2 & R_1 & R_0 & R_{-1} \\ R_5 & R_4 & R_3 & R_2 & R_1 & R_0 \end{bmatrix}$$

Number of DoAs that can be estimated is 5 > 3 (for ULA)

²Pal, P., and Vaidyanathan, P. P. (2010). Nested arrays: A novel approach to array processing with enhanced degrees of freedom. IEEE Transactions on Signal Processing, 58(8), 4167-4181.

³Nannuru, S., and Gerstoft, P. (2019, May). 2D Beamforming on Sparse Arrays with Sparse Bayesian Learning. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 4355-4359).

Simply apply SBL³ to $\mathbf{y}_{na}[n]$, where $\mathbf{y}_{na}[n] = \mathbf{Sy}[n]$

³Nannuru, S., and Gerstoft, P. (2019, May). 2D Beamforming on Sparse Arrays with Sparse Bayesian Learning. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 4355-4359).

Simply apply SBL³ to $\mathbf{y}_{na}[n]$, where $\mathbf{y}_{na}[n] = \mathbf{S}\mathbf{y}[n]$ Actual covariance $\mathbf{SR}_{y}\mathbf{S}^{H}$, and SBL covariance model is $\mathbf{S}\Sigma_{y}\mathbf{S}^{H}$, where Σ_{y} is Toeplitz

³Nannuru, S., and Gerstoft, P. (2019, May). 2D Beamforming on Sparse Arrays with Sparse Bayesian Learning. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 4355-4359).

Simply apply SBL³ to $\mathbf{y}_{na}[n]$, where $\mathbf{y}_{na}[n] = \mathbf{Sy}[n]$

Actual covariance $\mathbf{SR}_{y}\mathbf{S}^{H}$, and SBL covariance model is $\mathbf{S}\Sigma_{y}\mathbf{S}^{H}$, where Σ_{y} is Toeplitz

The ML estimation minimizes the KL distance between the actual density and model density assumed by SBL and so tries to best match the two covariance matrices.

³Nannuru, S., and Gerstoft, P. (2019, May). 2D Beamforming on Sparse Arrays with Sparse Bayesian Learning. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 4355-4359).

Simply apply SBL³ to $\mathbf{y}_{na}[n]$, where $\mathbf{y}_{na}[n] = \mathbf{Sy}[n]$

Actual covariance $\mathbf{SR}_{y}\mathbf{S}^{H}$, and SBL covariance model is $\mathbf{S}\Sigma_{y}\mathbf{S}^{H}$, where Σ_{y} is Toeplitz

The ML estimation minimizes the KL distance between the actual density and model density assumed by SBL and so tries to best match the two covariance matrices.

Figure: Nested array with 12 sensors

³Nannuru, S., and Gerstoft, P. (2019, May). 2D Beamforming on Sparse Arrays with Sparse Bayesian Learning. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 4355-4359).

Nested Arrays: SBL robustness

Figure: MUSIC

Figure: SBL

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Nested Arrays: SBL efficiency

Figure: nsens = 12, nsignals = 25, SNR = 10dB, nsnapshots = 500

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Summary

Summary

- Established a connection between SBL and MPDR beamforming.
 - Provides better insight into effective BF
 - Enables an approach to deal with more intractable inference problems

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Established a connection between SBL and MPDR beamforming.
 - Provides better insight into effective BF
 - Enables an approach to deal with more intractable inference problems
- Discussed Uniform Linear Arrays and Toeplitz Matrix Approximation property of SBL

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Established a connection between SBL and MPDR beamforming.
 - Provides better insight into effective BF
 - Enables an approach to deal with more intractable inference problems
- Discussed Uniform Linear Arrays and Toeplitz Matrix Approximation property of SBL

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Shown effectiveness of SBL for Nested Arrays to identify more sources than sensors